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CURRENT PRIVACY OPERATING 

PRACTICES

➢ High Costs

➢ Significant Opportunity Losses

SYNTHETIC DATA GENERATION

➢ Lower cost of Privacy Protection

➢ Lower Risk in case of Data 

Leakage

➢ Improved Opportunity Coverage

ANALYTICS PROBLEM

Synthetic data generation is the process of artificially generating data

that preserves data privacy while retaining information for meaningful

analysis. Firms using synthetic data can expect lower cost of privacy

operations, lower risk in case of data leakage and improved opportunity

coverage. However, with increasing levels of privacy, synthetic data

loses its ability to retain information and may impact model performance.
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BUSINESS PROBLEM

Firms collect and analyze sensitive consumer data to gain insights

about their business and develop cutting edge strategies. With

increasing regulations and risk of sensitive data leakage, firms employ

several stringent practices to ensure data privacy. However, these

practices drive-up operational costs and opportunity losses.

Synthetic data allows firms to relax these practices at the cost of

predictive power. In collaboration with a national timeshare firm, our

solution generates synthetic data that provides a high level of data

privacy without compromising on model performance.
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Fig 5. Net Value Assessment Process

➢ In most settings, we recommend DataSynthesizer which provides 81% 

data privacy with the same opportunity coverage as real data.

➢ Adding small amounts of noise is a powerful technique to improve data 

privacy with negligible drops in opportunity coverage. However, adding 

noise beyond a point can adversely affect model performance
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SYNTHETIC DATA GENRATION

MODEL PERFORMANCE TESTING

Benchmark Synthetic data ROC with varying noise levels

➢ Study the trade-off between privacy offered by synthetic data and its

predictive power.

➢Our scope is limited to studying the impact of synthetic data generation

for imbalanced binary classification problems and model performance will

be evaluated using ROC score.

➢Identifying the right methodology to generate synthetic data that offers

high levels of privacy for a negligible loss in opportunity coverage for our

client, denotes the success of this engagement.

Dataset is sourced from a timeshare firm and contains

customer membership and past transaction details.

Highly imbalanced dataset - ROC score is used

instead of accuracy to evaluate model performance.

Presence of outliers: Outliers were identified and

capped in the original dataset.

Constraints exist between features: Some features

are restricted in value by other features.

Measures to ensure that the synthetic data and real data

conform to the same template:

• Identifying datatypes of features to define metadata.

• Formulating data constraints that need to be fed into

the synthetic data generators.

*Detailed description withheld for confidentiality.

Firms can leverage the tradeoff profile generated in the study to assess the

expected net value in adopting various synthetic data generators. The

generation method with the highest net value can then be compared with the

net value under current practices to arrive at the optimal strategy for

adoption of data privacy practices.

Fig 1. Current VS Recommended Privacy Operating Practice

Fig 3. Methodology

Fig 4. Model Results
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INFORMATION CAPTURED BY SYNTHETIC DATA
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DataSynthesizer Gaussian Copula CTGAN

OPPORTUNITY GAIN/LOSS OF SYNTHETIC DATA COMPARED TO REAL DATA

SYNTHETIC DATA – PREDICTIVE PERFORMANCE VS PRIVACY

Business Priority
DEPLOYMENT RECOMMENDATIONS

DataSynthesizer Gaussian Copula CTGAN

Model Performance ✓

Privacy and model performance ✓ ✓

Data has many features/columns ✓

Maintaining feature constraints ✓ ✓

Toolkit

DataSynthesizer

Feature X < Feature Y

Feature K

Feature N = 1

Feature N = 0

Less than C

Greater than C

Fig 2. Data Constraints
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